Developing Rail Freight Corridors - what should be the next steps?

Dr. Gerhard Troche | Managing Director
UIC – CLECAT – FIATA Market Place Seminar | 14 October 2021
RFC Amber | Who we are

- EU Rail Freight Corridor based on European legislation: Commission Implementing Decision (EU) 177/2017 in connection with Regulation (EU) 913/2010 concerning a European Rail Network for Competitive Freight

- Co-operation of five railway Infrastructure Managers and one Allocation Body: SŽ-1 (Slovenia), GYSEV (Hungary), MÁV (Hungary), ŽSR (Slovakia), PLK (Poland) and the Hungarian Rail Capacity Allocation Office VPE

- First EU Rail Freight Corridor established on the initiative of Member States concerned: Poland, Slovakia, Hungary, Slovenia

Key objectives:
→ Strengthen cooperation across borders
→ Improve exchange with customers / corridor-users
→ Facilitate international rail freight

Watch our video: https://www.youtube.com/watch?v=CxkenAvexoQ
RFC Amber | Routing

Routing elaborated together with RUs to reflect market demand

Seamless electrified principal route
End-to-end ca. 1400 km, total line-length ca. 3300 km

Connected to global maritime transport
Seaport of Koper (> 50% rail share in hinterland traffic)

Gateway to South-Eastern Europe
Connection to Transbalkan-route (via Kelebia)

Gateway to Euro-Asian railway routes
Trans-Siberian / Euro-Asian Railway Routes (via Terespol/Malaszewicze)
RFC Amber | Active Member in a network

- Network of 11 corridors
- RFC Amber connecting to six other corridors
- Cooperation between RFCs ensured through the „RFC Network” under the umbrella of RailNetEurope
 - Network-wide Customer Information Platform (CIP): info-cip.rne.eu/
 - Guidelines and Specifications for harmonised structure of corridor documents, processes and KPIs
 - Joint projects for further development of RFC concept and services
Challenges for European rail freight

A quality challenge:
• Improving reliability and punctuality – raising customer satisfaction and staff and resource utilization

A cost challenge:
• Improving cost competitiveness – higher productivity and more efficient train operations, i.a. through economies of scale and better capacity utilisation

A service challenge:
• Adding new added-value service features – allowing rail to (re-)enter into new / lost market segments, e.g. through electric power supply on wagons or provision of reliable ETA-information European-wide

A technical challenge:
• Fully exploiting the potential of digitalisation and automation in rail freight – closing technical gaps, ensuring reliability and resilience under real-world conditions and ensuring IT-safety

A European challenge:
• Achieving a truly Single European Rail Area – ensuring efficient harmonized solutions across Europe, implementing interoperability and a European market approach
Opportunities

• Revision of TEN-T Regulation
 • Market-oriented adaptation of the TEN-T Core and Comprehensive Network
 • Exploiting synergies between Rail Freight Corridors and European Transport Corridors
 • Developing minimum infrastructure requirements
 • Create incentives for Member States and Infrastructure Managers to develop infrastructure beyond minimum requirements

• Develop the RFCs into cross-border and cross-sectoral cooperation platforms fostering the development of international rail freight

• Learning from global experience and best practice – examples:
 • North-American rail freight system
 • Transsiberian Mainline
 • Dedicated Rail Freight Corridors in India
Examples of global best practice

Selected cases and key features

Network with infra and train parameters; landbridge and port-hinterland traffic

Fully electrified route between Europe and Asia; major reductions of transit times

Dedicated corridors for freight with double-stack trains with electric traction
Developing Rail Freight Corridors (I)

• Rail Freight Corridors as rail backbone of the European Transport Corridors
• Allow RFCs to develop in line with market needs
• Address new flow patterns (= new business opportunities !), i.a. stemming from growing Euro-Asian landbridge traffic
• Improve cost competitiveness of rail freight by improving infra and train parameters (train length, axle-load / meter-load, loading gauge, average speed)
• Deploy TEN-T minimum infrastructure standards
• Reflect potential to reduce Greenhouse Gas Emissions through modal shift in investment decisions to achieve EU Green Deal objectives
Developing Rail Freight Corridors (II)

• Further develop interfaces between modes (closing gaps in terminal network + adaptation of terminals to allow efficient rail operations)
• Fully exploit potential of automation and digitalization
• Ensure sufficient capacity for freight on mixed traffic networks
• Reduce time span between capacity request and train run
• Improve information about and handling of temporary capacity restrictions
• Strengthen cooperation between sector partners – across organisational borders
• Measures to improve hard and soft infrastructure must go hand in hand – take into account global experiences!
A vision for rail freight

Bringing together the best of two worlds

Strength of global best-practice cases:
- Infrastructure and train operations parameters and practices

Strength of EU Rail Freight Corridors:
- Managing border-crossing situations, procedures and cross-sectoral cooperation

A world-class rail freight system with highest performance in efficiency, quality and sustainability
Thank you for your attention!

www.rfc-amber.eu